Java LibreOffice Programming. Chapter 22. Styles

Part 4: Calc Modules
Chapter 22. Styles

This chapter looks at how spreadsheet styles are stored,
how they can be examined, and how new styles can be
instantiated and used.

1. Obtaining Style Information

Draft #2 (20th March 2017)

Topics: Obtaining Style
Information: the
TableCellStyle and
TablePageStyle
Services; Creating and
Using a New Style;
Adding Borders

Example folders: "Calc
Tests" and "Utils"

Calc uses the same style API as Writer, Draw, and Impress documents. Figure 1

shows its structure.

XStyleFamiliesSupplier

getStyleFamilies()

XxMame
Access collection

=,

"CEIISWIEE“E

lookup using
a style family "PagEST‘y’|EE"i
name
_ vy
XMame
Container

i

i
lookup/add/ Default i

deleteusinga | «» "
Headin
property set g i

"Rewlt"i

(style) name "Headingl“i "REEU|‘t2”i

S

~

a style family

_ property sets

{or styles)

Figure 1. Calc Style Families and their Property Sets.

The Calc API only has two style families, CellStyles and PageStyles. A cell style can
be applied to a cell, a cell range, or a spreadsheet (which is a very big cell range). A

page style can be applied only to a spreadsheet.

Each style family consists of styles, which are collection of property sets. The default

cell style is called "Default", as is the default page style.

The StylesAllinfo.java example prints out the style family names and the style names

associated with the input document:

// in StylesAllInfo.java
public static void main (String argsl([])

© Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles

if (args.length < 1) {
System.out.println ("Usage:
return;

}

XComponentLoader loader =
XComponent doc =
if (doc == null) {

Lo.openDoc (args[0],

Draft #2 (20th March 2017)

run StylesAllInfo <fnm>");

Lo.loadOffice ()

loader) ;

System.out.println ("Could not open " + args[0]);

Lo.closeOffice();
return;

}

// get all the style families for this document

String[] styleFamilies =

System.out.println("Style Family Names
styleFamilies.length + "):

styleFamilies)

" + styleFamily);

for (String styleFamily
System.out.println ("
System.out.println();

Info.getStyleFamilyNames (doc) ;

(" +
")

// list all the style names for each style family

for (int 1i=0;
String styleFamily =
System.out.println((i+1) + ".
String[] styleNames =
Lo.printNames (styleNames) ;

}

Lo.closeDoc (doc) ;
Lo.closeOffice () ;
} // end of main ()

i < styleFamilies.length;
styleFamilies[i];
\"" + styleFamily +

Info.getStyleNames (doc,

i++) |

"\" Family styles:");
styleFamily) ;

This code uses the Info.getStyleFamilyNames() and Info.getStyleNames() functions
which | utilized in earlier chapters, so | won't explain their implementation again. The

output for a simple spreadsheet is:

Style Family Names (2):
CellsStyles
PageStyles

1. "CellStyles" Family styles:

No. of names: 5
"Default" "Heading"
"Result2"

"Headingl"

2. "PageStyles" Family styles:
No. of names: 2
"Default" "Report"

Finding Style Information

"Result"

From a programming point of view, the main difficult with styles is finding
documentation about their properties, so that a value can be correctly read or changed.

2 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

One approach is to use my Info.getStyleProps() method to list the properties for a
given style family and style name. For example, the following displays all the
properties for the default cell and page styles:

// commented out code in StylesAllInfo.java
Props.showProps ("CellStyles Default",
Info.getStyleProps (doc, "CellStyles", "Default"));

Props.showProps ("PageStyles Default",
Info.getStyleProps (doc, "PageStyles", "Default"));

The problem is that the output is extremely long, and some property names are less
descriptive/understandable than others.

It's probably better to search the online documentation for properties. Cell styles are
managed by the TableCellStyle service (see Figure 22) and page styles by the
TablePageStyle service (Figure 23). Use 1odoc TableCellStyle and lodoc
TablePageStyle t0 access the online information.

The properties managed by TableCellStyle are inherited from a number of places, as
summarized by Figure 2.

CellProperties
(table)

4

XStyle () Style
Character

Properties
g

+ other

property
classes

a few properties

Cellstyle Paragraph

Properties
—

1'I I

‘ TableCellstyle ‘

a few properties

Figure 2. The TableCellStyle Service.

By far the most important source of cell style properties is the CellProperties class in
the table module (use 10doc cellproperties service). However, if a property
relates to the text in a cell then it's more likely to originate from the
CharacterProperties or ParagraphProperties classes in the style module (e.g. use

lodoc characterproperties service)

The properties managed by TablePageStyle are also inherited from a few places, as
summarized by Figure 3.

3 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

KStyle -j:_-—{ Style ‘ ‘ PageProperties
v

a few properties

PageStyle

TablePageStyle

a few properties

Figure 3. The TablePageStyle Service.

The main place to look for page properties is the PageProperties class in the style
module (e.g. Use lodoc pageproperties service). The properties relate to things
such as page margins, headers, and footers, which become important when printing a
sheet.

2. Creating and Using New Styles

The steps required in creating and using a new style are illustrated by
BuildTables.java, in createStyles() and applyStyles():

// in BuildTables.java

// globals
private static String HEADER STYLE NAME = "My HeaderStyle";
private static String DATA STYLE NAME = "My DataStyle";

public static void main (String argsl])
{
XComponentLoader loader = Lo.loadOffice();
XSpreadsheetDocument doc = Calc.createDoc (loader) ;
if (doc == null) {
System.out.println ("Document creation failed");
Lo.closeOffice();
return;
}
GUI.setVisible (doc, true);
XSpreadsheet sheet = Calc.getSheet (doc, 0);

buildArray (sheet)
createStyles (doc)
applyStyles (sheet

) .

’

Lo.saveDoc (doc, "buildTable.ods");
Lo.waitEnter () ;

4 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

Lo.closeDoc (doc) ;
Lo.closeOffice();
} // end of main()

createStyles() creates two cell styles called "My HeaderStyle" and "My DataStyle",
which are applied to the spreadsheet by applyStyles(). The result is shown in Figure 4.

APR

Figure 4. Styled Spreadsheet Cells.

The "My HeaderStyle" style is applied to the top row and the first column: the cells

are colored blue, and the text made white and centered. The "My DataStyle" is used
for the numerical data and formulae cells: the background color is made a light blue,
and the text is right-justified. applyStyles() also changes the border properties of the
bottom edges of the cells in the last row to be thick and blue.

The resulting spreadsheet is saved in "buildTable.ods". If this document is examined
by the StylesAllInfo.java program, it lists the new styles in the "CellStyles™ family:

> run StylesAllInfo buildTable.ods
Loading Office...
Opening buildTable.ods
Style Family Names (2):
CellStyles
PageStyles

1. "CellStyles" Family styles:

No. of names: 7
"Default" "Heading" "Headingl" "My DataStyle"
"My HeaderStyle" "Result" "Result2"

2. "PageStyles" Family styles:
No. of names: 2
"Default" "Report"

Closing the document
Closing Office
Office terminated

2.1. Creating a New Style
BuildTables.java calls createStyles() to create two styles:

// in BuildTables.java

5 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

public static void createStyles (XSpreadsheetDocument doc)
// create HEADER STYLE NAME and

// DATA STYLE NAME cell styles

{

try {
XStyle stylel = Calc.createCellStyle (doc, HEADER STYLE NAME);

XPropertySet propsl = Lo.qgi (XPropertySet.class, stylel);
propsl.setPropertyValue ("IsCellBackgroundTransparent”, false);
propsl.setPropertyValue ("CellBackColor", 0x6699FF) ; //dark blue
propsl.setPropertyValue ("CharColor", OxFFFFFF); // white

// Center cell content horizontally and vertically in the cell
propsl.setPropertyValue ("HoriJustify", CellHoriJustify.CENTER) ;
propsl.setPropertyValue ("VertJustify", CellVertJustify.CENTER) ;

XStyle style2 = Calc.createCellStyle (doc, DATA STYLE NAME) ;

XPropertySet props2 = Lo.qgil (XPropertySet.class, style2);
props2.setPropertyValue ("IsCellBackgroundTransparent”", false);
props2.setPropertyValue ("CellBackColor", O0xC2EBFF); //light blue
props2.setPropertyValue ("ParaRightMargin", 500);
// move away from right edge

}

catch (com.sun.star.uno.Exception e) {
System.out.println(e);

}
} // end of createStyles()

The styles are created by two calls to Calc.createCellStyle(), which stores them in the
"CellStyles” family:

// in the Calc class
public static XStyle createCellStyle (XSpreadsheetDocument doc,
String styleName)
{
// access the "CellStyles" family
XComponent compDoc = Lo.qi (XComponent.class, doc);
XNameContainer styleFamilies =
Info.getStyleContainer (compDoc, "CellStyles");

// create a new style
XStyle style = Lo.createlInstanceMSF (XStyle.class,
"com.sun.star.style.CellStyle");

try {
styleFamilies.insertByName (styleName, style); // add to family
return style;

}

catch (Exception e)

{ System.out.println("Unable to create style: " + styleName);

return null;

}
} // end of createCellStyle()

Calc.createCellStyle() calls Info.getStyleContainer() to return a reference to the
"CellStyles" family as an XNameContainer. A new cell style is created by calling
Lo.createlnstanceMSF(), and referred to using the XStyle interface. This style is

6 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

added to the family by calling XNameContainer.insertByName() with the name
passed to the function.

A new style is automatically derived from the "Default"” style, so the rest of the
createStyles() method involves the changing of properties. Five are adjusted in the
"My HeaderStyle" style, and three in "My DataStyle".

The header properties are "IsCellBackgroundTransparent”, "CellBackColor",
"CharColor", "HoriJustify", and "VertJustify", which are all defined in the
CellProperties class (see Figure 2).

The data properties are "IsCellBackgroundTransparent”, "CellBackColor", and
"ParaRightMargin”. Although "IsCellBackgroundTransparent” and "CellBackColor"
are from the CellProperties class, "ParaRightMargin” is inherited from the
ParagraphProperties class in the style module (also in Figure 2).

2.2. Applying a New Style

The new styles, "My HeaderStyle™" and "My DataStyle", are applied to the spreadsheet
by the BuildTable.java method applyStyles():

// in BuildTable.java
private static void applyStyles (XSpreadsheet sheet)

{
// apply cell styles
Calc.changestyle(sheet, "B1:N1", HEADER_STYLE_NAME);
Calc.changeStyle (sheet, "A2:A4", HEADER STYLE NAME);
Calc.changeStyle (sheet, "B2:N4", DATA STYLE NAME) ;

// change borders for the cell ranges
Calc.addBorder (sheet, "A4:N4", Calc.BOTTOM BORDER, 0x6699FF);
//dark blue bottom edge

Calc.addBorder (sheet, "N1:N4",
Calc.LEFT BORDER | Calc.RIGHT BORDER, 0x6699FF);
// dark blue left and right edges
}// end of applyStyles()

The header style is applied to two cell ranges: B1:N1 is the top row containing the
months (see Figure 4), and A2:A4 is the first column. The data style is applied to
B2:N4 which spans the numerical data and formulae.

Calc.changeStyle() is defined as:

// in the Calc class
public static void changeStyle (XSpreadsheet sheet,
String rangeName, String styleName)
{ XCellRange cellRange = Calc.getCellRange (sheet, rangeName) ;
Props.setProperty(cellRange, "CellStyle", styleName);
}

Calc.changeStyles() manipulates the styles via the cell range. The cellRange variable
refers to a SheetCellRange service which inherits many properties, including those

7 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

from CellProperties. Its "CellStyle" property holds the style name used by that cell
range.

2.3. Adding Borders

The Calc.addBorder() method highlights borders for a given range of cells. The two
calls in applyStyles() draw a blue line along the bottom edge of the A4:N4 cell range,
and two lines on either side of the "SUM™" column (the N1:N4 range), as shown in
Figure 5.

224
432 57.3 254 28.5
254

Figure 5. Borders around the Data.

Four border constants are defined in Calc.java:

// in the Calc class

// for border decoration (bitwise composition is possible)
public static final int TOP_BORDER = 0x01;

public static final int BOTTOM BORDER = 0x02;

public static final int LEFT BORDER = 0x04;

public static final int RIGHT BORDER = 0x08;

Calc.addBorder() highlights a border or borders for a cell range in three steps. First it
creates a border line style, by instantiating a BorderLine2 object. That line style is
used to create a border style represented by a TableBorder2 object. Finally, the border
style is applied to the cell range by setting its "TableBorder2" property.

// in the Calc class
public static void addBorder (XSpreadsheet sheet, String rangeName,
int borderVals, int color)
{
// create a border line style
BorderLine2?2 line = new BorderLine2();
line.Color = color;
line.InnerLineWidth = line.LineDistance = 0;
line.OuterLineWidth = 100;

// use the line style to set border styles
TableBorder2 border = new TableBorder2();

if ((borderVals & Calc.TOP_BORDER) == Calc.TOP BORDER) {
border.TopLine = line;
border.IsToplLineValid = true;

}

if ((borderVals & Calc.BOTTOM BORDER) == Calc.BOTTOM BORDER) {
border.BottomLine = line;

8 © Andrew Davison 2017

Java LibreOffice Programming. Chapter 22. Styles Draft #2 (20th March 2017)

border.IsBottomLineValid = true;

}

if ((borderVals & Calc.LEFT_BORDER) == Calc.LEFT_BORDER) {
border.LeftLine = line;
border.IsLeftLineValid = true;

}

if ((borderVals & Calc.RIGHT BORDER) == Calc.RIGHT BORDER) {
border.RightLine = line;
border.IsRightLineValid = true;

}

// store the border style in the cell range
XCellRange cellRange = sheet.getCellRangeByName (rangeName) ;
Props.setProperty(cellRange, "TableBorder2", border);

} // end of addBorder ()

9 © Andrew Davison 2017

